AC/DC fields rely on an electrostatic gradient between a postive and negative plate. If you put a conductor between these two plates, an electrical short will occur, eliminating the gradient, which then eliminates the effectiveness of AC/DC fields.
Additionally AC/DC fields rely on the movement of water particles to collide to cause coalesce of the water droplets into larger size molecules. Put a barrier in the way of this movement such as stabilized emulsions and high surface tensions, then movement is restricted.
- High water contents, typical in stabilized emulsions and heavy oil applications.
- Conductive oil, found in heavy oil applications.
- Chemicals such as polymers used in drilling, and water based chemical injection solutions.
AC/DC fields rely on the movement of water molecules to impact into each other in order to create larger water molecules. Put a barrier in the way of this movement then this limits the effectiveness of an AC/DC field. Typical barriers are stabilized emulsions and high surface tensions, long chain hydrocarbons etc., as experiened with heavy oil.
In theory by modulating a frequency, this changes the acceleration of the water particle in an AC/DC field. Vendors that offer this type of solution, state that it helps breaks emulsions, however shorting issues still occur, surface tensions still need to be overcome, as well as movement through long chain hydrocarbons present in heavy oil. This still limits conductive operations, requires the extensive use of chemicals in heavy oil operations, and barriers to movements still exist. As a result a modulating AC/DC will in essence just increase capital cost and a more complicated operating experience.
The short answer is "no"!
By adding an SCR/Thyristor control to the front on the AC/DC system, all you are doing is setting up a way to automatically reset the power every time a short occurs. However, this does not eliminate the short. The short still occurs and the AC/DC gradient is still eliminated.
Well first of all a visible interface does not exist in 99% of all electrostatic operations. It is more of an "emulsion pad" that varies in water content as you move up the pad.
Secondly there is no alternating current experience on the grids. In all AC/DC systems the AC current is changed to constant DC on the grids.
So how an AC field is created between the grids and interface is a disussion that is ongoing.
Again a quick answer is "they should all be about the same size".
Electrostatic dehydration and desalting relies on the removal of water molecules from oil under Stoke's Law, which is a Law of Science applied to everyone. Assuming that gravity, operating viscosities and differential densities are the same for all vendors, the only way you can increase separation under Stoke's Law is to increase the water droplet size.
In order to obtain smaller AC/DC vessels than others there must be some way the the droplet size being created is much larger than the droplet sizes of the same AC/DC system being offered by others. Unfortunately there is a limit to the largest droplet size that can be created using electrostatic technology, which is called Gauss' Law, which applies force to the water droplet. Too much force actually rips the water molecule apart making them smaller, not larger. This maximum force is the same for every vendor. So in essence the maximum droplet size for all vendors is the same. Therefore all vendors should have about the same vessel size.
Things to note here.
- Operating viscosities can only be estimated if enough viscosity points are offered to meet ASTM D2270 & D341calulations. Do not provide enough data points and one can assume a much lower operating viscosity, providing a smaller vessel sizing!
- Operating viscosities can be manipulated using chemicals. So one can assume a lower operating viscosity, providing a smaller vessel then "blame it" on chemicals.
- Smaller vessels increase vertical velocities,which require the water particule size required to be much larger to meet the same separation. So as you descrease vessel size, the problems of operation goes up exponentially.
Client should take a look at these points when comparing vessel sizes. Do not always take the vendors word for a guarantee. If "it does not work" the client ends up with the problem. Conservatism is a must with electrostatic separation, especially with heavy oils that almost have the same densities as water!
You can convert the system to AC. This would require a change of internals inside the vessel, and a different transformer power supply.
Alternatively AMR Process, has a patent pending, operational, retrofit solution, that converts the AC/DC system to AC, by just changing the transformer (no internals changes required). It also allows the client to change back to AC/DC system, with a flick of a switch if oil conditions change. AMR Process is the only supplier in world with this technology.



